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Abstract

This paper addresses the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. The basic idea of the

approach is to find the conditions for precise merging of two B-spline curves, and perturb the control points of the curves by constrained

optimization subject to satisfying these conditions. To obtain a merged curve without superfluous knots, we present a new knot adjustment

algorithm for adjusting the end k knots of a kth order B-spline curve without changing its shape. The more general problem of merging curves

to pass through some target points is also discussed.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Approximate conversion is an important issue in data

communication between different CAD systems [1]. As

mentioned by Hoschek [2], approximate conversion

includes the following two problems:

† Degree reduction: finding a parametric curve of degree n

that approximates the given curve of degree m ðn , mÞ:

† Merging: merging as many curve segments of degree n as

possible to get one curve segment of degree m ðn # mÞ:

Degree reduction methods for Bézier, Ball, and B-spline

curves and surfaces have been extensively investigated

[3–13]. Merging is one of the main methods for data

reduction; by merging as many curve segments as possible

into one curve, the amount of geometric data needed for

communication can be reduced. In Ref. [14], we presented a

method for approximate merging of a pair of Bézier curves

using constrained optimization method. The objective of this

paper is to consider approximate merging of B-spline curves.

The approximate merging problem we address is as

follows. Given two adjacent order k B-spline curves P(t) and

R(s) with knot vectors T ¼ {t0; t1;…; tk;…; tn;…; tnþk} and

S ¼ {s0; s1;…; sk;…; sm;…; smþk} respectively, and control

points Pi ði ¼ 0; 1;…; nÞ and Rj ðj ¼ 0; 1;…;mÞ respect-

ively, find an order k B-spline curve FðuÞwith control points

Fi ði ¼ 0; 1;…; n þ m 2 k þ 2Þ and knot vector U ¼

{t0; t1;…; tk;…; tn; tnþ1 ¼ s0k21; s
0
k;…; s0mþk}; where s0i ¼

f ðsiÞ for some linear function f, such that a suitable distance

function dðF; �FÞ between FðuÞ and

�FðuÞ ¼
PðuÞ; tk21 # u # tnþ1

Rðf 21ðuÞÞ; s0k21 # u # s0mþ1

(
;

is minimized.

The basic idea of our method is to first find the conditions

for precise merging of two B-spline curves, and perturb the

control points of the curves by constrained optimization

subject to satisfying the precise merging conditions. We

then reparametrize the resulting curves using a new knot

adjustment algorithm we present. Such knot adjustment is

needed for producing a merged B-spline curve efficiently

without superfluous knots.

The remainder of the paper is organized as follows.

Section 2 presents the definition of the B-spline curves, the

de Boor algorithm, and our knot adjustment algorithm.

Section 3 describes the method for approximate merging of

a pair of B-spline curves; the more general problem of
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approximate merging with point constraints is also dis-

cussed. Conclusions are given in Section 4.

2. B-spline curves, evaluation and knot adjustment

A B-spline curve of order k with control points Pi ði ¼

0; 1;…; nÞ can be defined as

PðtÞ ¼
Xn

i¼0

PiNi;kðtÞ; tk21 # t # tnþ1; ð1Þ

where Ni;kðtÞare the B-spline basis functions of order k

defined over the knot vector T ¼ {t0; t1;…; tk;…tn;…; tnþk};

which is defined by the following recursive de Boor-Cox

formula [15]

Ni;1ðtÞ ¼
1; ti # t , tiþ1

0; Otherwise

(
;

Ni;kðtÞ ¼
t 2 ti

tiþk21 2 ti

Ni;k21ðtÞ þ
tiþk 2 t

tiþk 2 tiþ1

Niþ1;k21ðtÞ: ð2Þ

The point on the curve PðtÞ at parameter t ðt [ ½tj; tjþ1�Þ) can

be evaluated using the following de Boor algorithm

and PðtÞ ¼ Pk21
j2kþ1ðtÞ:

To compute the derivatives of a B-spline curve, by letting

P0
i ¼ Pi; and writing

Pð0ÞðtÞ ¼ PðtÞ ¼
Xn

i¼0

P0
i Ni;kðtÞ;

we get (see p. 97 in Ref. [15])

PðlÞðtÞ ¼
Xn2l

i¼0

Pl
iNiþ1;k2lðtÞ; ð4Þ

where

Pl
i ¼

Pi; l ¼ 0

k 2 l

tiþk 2 tiþl

ðPl21
iþ1 2 Pl21

i Þ; l . 0

8><
>: : ð5Þ

Suppose two kth order B-spline curves PðtÞ and RðsÞwith

knot vectors T ¼ {t0; t1;…; tk;…; tn;…; tnþk} and S ¼

{s0; s1;…; sk;…; sm;…; smþk} are to be merged. In our

merging algorithm, after perturbing the control points to

satisfy precise merging conditions, we adjust the knot

vectors of the curves. Specifically, we adjust the last k

knots of the curve PðtÞ so that they match k knots of the

curve RðsÞ; that is, the knot vector of PðtÞ must be adjusted

from T to T0 ¼ {t0; t1;…; tk;…; tn; tnþ1; sk; skþ1;…; s2k22}:

Although this knot adjustment can be achieved by first

clamping T, and then unclamping it to T0 [15], for

efficiency, we propose a new general algorithm to directly

adjust the knot vector T to T2 ¼ {t0; t1;…; tk;…; tn; tnþ1;

t0nþ2;…; t0nþk}; where tnþ1 # t0nþ2 # · · · # t0nþk21 # t0nþk:

Suppose the new curve defined on the new knot vector T2

is denoted by QðtÞwith control points Q0;Q1;…;Qn: Since

the shape of the curve remains unchanged, we have PðtÞ ¼
QðtÞ: We claim that Qi ¼ Pi; 0 # i # n 2 k þ 2; and the

other Qi; n 2 k þ 3 # i # n can be computed recursively by

Algorithm 1. The correctness proof is given in Appendix 1.

Algorithm 1. Computing the new control points after

knot adjustment from T to T2

1. Compute Pl
n2kþ2; l ¼ 1; 2;…; k 2 1 by Eq. (5).

2. Let Ql
n2kþ2 ¼ Pl

n2kþ2; for l ¼ 0; 1;…; k 2 1:

3. Compute Q0
i for n 2 k þ 3 # i # n by (see top row of

Fig. 1)

Ql
i ¼

t0iþk21 2 tiþl

k 2 l 2 1
Qlþ1

i21 þ Ql
i21;

i ¼ n 2 k þ 3; n 2 k þ 4;…; n; l ¼ 0; 1;…; n 2 i;

ð6Þ

which can be derived from Eq. (5)

4. Let Qi ¼ Pi for i # n 2 k þ 2; and Qi ¼ Q0
i for n 2 k þ

3 # i # n:

Fig. 2 shows the results of adjusting the knot vectors

of two cubic B-spline curves. The original control

polygons are shown in solid line, while the new control

polygons are shown in dotted line. In Fig. 2(a), the

knot vector is adjusted from {0; 0; 0; 0; 0:5; 1; 1; 1; 1} to

{0; 0; 0; 0; 0:5; 1; 1:3; 1:3; 1:3}: In Fig. 2(b), is adjusted to

{ 2 0:6;20:4;20:2; 0; 0:5; 1; 1:5; 1:6; 1:7}:

3. Merging by constrained optimization

Suppose PðtÞ and RðsÞ are two B-spline curves to be

approximately merged. Let RðsÞ be a B-spline curve

with control points Ri ði ¼ 0; 1;…;mÞ and knot vector

Fig. 1. Recursive computation of Qi ¼ Q0
i ; i ¼ n 2 k þ 2;…; n:

Pr
i ðtÞ ¼

Pi; r ¼ 0; i ¼ 0; 1;…; n

tiþk 2 t

tiþk 2 tiþr

Pr21
i þ

t 2 tiþr

tiþk 2 tiþr

Pr21
iþ1 ; r ¼ 1; 2;…; k 2 1; i ¼ j 2 k þ 1;…; j 2 r

8><
>: ; ð3Þ
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S ¼ {s0; s1;…; sk;…; sm;…; smþk}: Without loss of general-

ity, we suppose that the order of RðsÞ is also k, and tnþ1 ¼

sk21: To obtain a good parametrization for the merged

curve, we perform a linear transformation f on the knot

vector S such that

arc length of PðtÞ over ½tn; tnþ1�

arc length of RðsÞ over ½sk 2 sk21�
¼

tnþ1 2 tn
sk 2 sk21

:

3.1. Conditions for precise merging

We first derive the conditions for the curves PðtÞ and RðsÞ

to be precisely merged into one B-spline curve. We let the

curves share common derivatives, that is, to precisely merge

at Pðtnþ1Þ ¼ Rðsk21Þ; we need

PðlÞðtnþ1Þ ¼ RðlÞðsk21Þ; l ¼ 0; 1;…; k 2 2;

i.e.

Xn2l

i¼n2kþ1

Pl
iN

T
iþ1;k2lðtnþ1Þ ¼

Xk212l

i¼0

Rl
iN

S
iþ1;k2lðsk21Þ;

l ¼ 0; 1;…; k 2 2;

ð7Þ

where NT
i;kðtÞ NS

i;kðsÞ are B-spline basis functions defined on

the knot vectors T and S, respectively. According to Eq. (6),

Pl
i and Rl

i in Eq. (7) can be rewritten as
Pn

j¼n2kþ1 aðlÞ
ij Pj andPk21

j¼0 bðlÞ
ij Rj; respectively, where aðlÞ

ij and bðlÞ
ij can be

computed by Algorithms 2 and 3, respectively.

Algorithm 2. Computing aðlÞ
ij ; n 2 k þ 1 # i # n 2 l;

n 2 k þ 1 # j # n; 0 # l # k 2 2:

1. For n 2 k þ 1 # j # n; let p0; p1;…; pn be scalars, and

pi ¼ dij ¼
0; i – j

1; i ¼ j

(
:

2. Let

pl
i ¼

pi; for l ¼ 0

k 2 l

tiþk 2 tiþl

ðpl21
iþ1 2 pl21

i Þ for l . 0

8><
>: :

3. Let aðlÞ
ij ¼ pl

i; n 2 k þ 1 # i # n 2 l; 0 # l # k 2 2:

Algorithm 3. Computing bðlÞ
ij ; 0 # i # k 2 1 2 l; 0 #

j # k 2 1; 0 # l # k 2 2:

1. For 0 # j # k 2 1; let p0; p1;…; pn be scalars and

pi ¼ dij ¼
0; i – j

1; i ¼ j

(
:

2. Let

pl
i ¼

pi; for l ¼ 0

k 2 l

siþk 2 siþl

ðpl21
iþ1 2 pl21

i Þ; for l . 0

8><
>: :

3. Let bðlÞ
ij ¼ pl

i; 0 # i # k 2 1 2 l; 0 # l # k 2 2:

Then the precise merging conditions in Eq. (7) can be

rewritten as

Xn

j¼n2kþ1

Xn2l

i¼n2kþ1

aðlÞ
ij NT

iþ1;k2lðtnþ1Þ

 !
Pj

2
Xk21

j¼0

Xk212l

i¼0

bðlÞ
ij NS

iþ1;k2lðSk21Þ

 !
Rj ¼ 0;

l ¼ 0; 1;…; k 2 2:

ð8Þ

3.2. Merging by constrained optimization

To merge two arbitrary curves PðtÞ and RðsÞ; we first

perturb their control points so that the curves can be

precisely merged. We achieve this by minimizing the total

perturbation of the control points subject to the precise

merging constraints Eq. (8). Let the perturbation of the

control points of PðtÞ and RðsÞ be denoted by ei ¼

{ex
i ;e

y
i ;e

z
i } i¼n2kþ2;n2kþ3;…;n and di¼{dx

i ;d
y
i ;d

z
i };

Fig. 2. Two examples of knot adjustment of B-spline curves.
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i¼0;1;…;k22 respectively.1 That is, the modified

curves are

P̂ðtÞ ¼
Xn

i¼0

P̂iN
T
i;kðtÞ ¼

Xn

i¼0

ðPi þ eiÞN
T
i;kðtÞ; tk21 # t # tnþ1;

and

R̂ðsÞ ¼
Xm
i¼0

R̂iN
S
i;kðsÞ ¼

Xm
i¼0

ðRi þdiÞN
S
i;kðsÞ; sk21 # s# smþ1;

and the precise-merging conditions from Eq. (8) become

Xn

j¼n2kþ1

Xn2l

i¼n2kþ1

aðlÞ
ij NT

iþ1;k2lðtnþ1Þ

 !
ðPj þ ejÞ

2
Xk21

j¼0

Xk212l

i¼0

bðlÞ
ij NS

iþ1;k2lðsk21Þ

 !
ðRj þdjÞ ¼ 0;

l¼ 0;1;…;k22:

ð9Þ

More generally, we consider the approximate merging

problem in which the merged curve is constrained to pass

through some target points on the original curves. This can

be achieved by adding point constraint conditions as

follows

Xn

i¼n2kþ1

PiN
T
i;kðtjÞ ¼

Xn

i¼n2kþ1

ðPi þ eiÞN
T
i;kðtjÞ; j¼ 0;1;…;g:

Xk21

i¼0

RiN
S
i;kðsjÞ ¼

Xk21

i¼0

ðRi þdiÞN
S
i;kðsjÞ; j¼ 0;1;…;h:

where tj; j¼ 0;1;…;g and sj; j¼ 0;1;…;h are parameters

of the target points on PðtÞ and RðsÞ; respectively.2 So we

have

Xn

i¼n2kþ1

eiN
T
i;kðtjÞ ¼ 0; j¼ 0;1;…;g: ð10Þ

Xk21

i¼0

diN
S
i;kðsjÞ¼ 0; j¼ 0;1;…;h: ð11Þ

We determine ei di by setting the optimization objective

Oðei;djÞ as

Min Oðei;djÞ ¼
Xn

i¼n2kþ2

ei þ
Xk22

j¼0

dj; ð12Þ

and define the Lagrange function as

L¼
Xn

i¼n2kþ2

eiþ
Xk22

j¼0

djþ
Xk22

l¼0

ll

Xn

j¼n2kþ1

Xn2l

i¼n2kþ1

aðlÞij NT
iþ1;k2lðtnþ1Þ

 !0
@

�ðPjþejÞ2
Xk21

j¼0

Xk212l

i¼0

bðlÞ
ij NS

iþ1;k2lðsk21Þ

 !
ðRjþdjÞ

1
A

þ
Xg

j¼0

lk21þj

Xn

i¼n2kþ1

eiN
T
i;kðtjÞ

 !
þ
Xh

j¼0

lkþgþj

Xk21

i¼0

diN
S
i;kðsjÞ

 !
;

ð13Þ

where li¼ blx
i ;l

y
i ;l

z
i c are the Lagrange multipliers. By setting

›L=›ex
i ; ›L=›e

y
i ; ›L=›ez

i ; ›L=›dx
j ; ›L=›d

y
j ; ›L=›dz

j ; ›L=›lx
i ; ›L=›l

y
i ;

›L=›lz
i to zero, and writing the derived equations in vector form,

we obtain a system of linear equations, which includes Eqs. (9)–

(11), and the following two equations

2ei¼2
Xk22

l¼0

Xn2l

j¼n2kþ1

lla
ðlÞ
ij NT

iþ1;k2lðtnþ1Þþ
Xg

j¼0

lk21þjN
T
i;kðtjÞ;

n2kþ2# i#n;

ð14Þ

2dj¼
Xk22

l¼0

Xk212l

i¼0

llb
ðlÞ
ij NS

iþ1;k2lðsk21Þþ
Xh

j¼0

lkþgþjN
S
i;kðsjÞ;

0# j#k22:

ð15Þ

By solving the linear system, the constrained optimization

solution can be obtained.

After obtaining two modified curves that can be precisely

merged, we let

Tnew¼{t0;t1;…;tk;…;tn;tnþ1¼sk21;sk;skþ1;…;sm;…;smþk}

be the knot vector of the merged curve to be constructed.

Using Algorithm 1, we adjust the knot vector T of curve P̂ðtÞ

to T0 ¼{t0;t1;…;tk;…;tn;tnþ1;sk;skþ1;…;s2k22} and the knot

vector S of curve R̂ðsÞ to S0 ¼{tn2kþ2;…;tn;tnþ1¼

sk21;sk;skþ1;…;smþk}; respectively. For simplicity, we still

denote the control points after knot adjustment as P̂i; i¼

0;1;…;n; R̂i; i¼0;1;…;m: Since P̂ðtÞ and R̂ðsÞ satisfy the

precise merging conditions, i.e. they have common

derivatives at parameter tnþ1¼sk21; we conclude that the

control points of the merged curve are

{P̂0;P̂1;…;P̂n2kþ1;P̂n2kþ2¼ R̂0;P̂n2kþ3¼ R̂1;…;P̂n

¼ R̂k22;R̂k21;…;R̂m}:

3.3. Error estimation and examples

B-spline curves of order 4 are among the most commonly

used parametric curves in shape design. Here, we give an

error analysis for merging two B-spline curves of order 4;

error analysis for order 2 and 3 curves can be similarly

derived. For higher-order curves, it seems hard to obtain

explicit estimation.

1 From precise merging conditions, only k 2 1 control points are

involved in each curve, see Eq. (7). Thus, for convenience in subsequent

derivation, we just set e i ¼ 0 ði ¼ 0; 1;…; n 2 k þ 1Þ and di ¼ 0 ði ¼

k 2 1; k 2 2;…;mÞ:
2 Note that the total number of point constraints for two curves should be

less than k 2 1; otherwise the solution of the equation system does not exist.
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Theorem 1. Suppose PðtÞ and RðsÞ are two fourth-order B-

spline curves, and tnþ1 ¼ · · · ¼ tnþk; s0 ¼ · · · ¼ sk21; we

have the following estimation

kP2Fk#
3

4

u1D1

u1þD1

kd1kþ
1

3

ðu1þD1Þ
2þu1D1þu2

1

ðu1þD1Þ
2

�ðu1D1kd2kþ lu12D1lkd1kÞ; ð16Þ

kR2Fk#
3

4

u1D1

u1þD1

kd1kþ
1

3

ðu1þD1Þ
2þu1D1þu2

2

ðu1þD1Þ
2

�ðu1D1kd2kþ lu12D1lkd1kÞ; ð17Þ

where u1 ¼ tnþ12 tn; D1 ¼ sk 2sk21; d1 ¼Pð1Þðtnþ1Þ2Rð1Þ

ðtk21Þ; d2¼Pð2Þðtnþ1Þ2Rð2Þðsk21Þ; kP2Fk¼maxt[½tk21;tnþ1�

kPðtÞ2FðtÞk; and kR2Fk¼maxs[½sk21;snþ1�
kRðsÞ2Fðtnþ1þsÞk:

A proof of Theorem 1 is given in Appendix B.

We give some examples to illustrate our method. Figs. 3

and 4 show some examples of merging clamped and

unclamped B-spline curves, respectively. The original

curves are rendered in solid line, and the new merged

curves are rendered in dotted line. In Fig. 3(a), the knot

vectors of the original curves are both [0,0,0,0,0.5,1,1,1,1],

and that of the merged curve is [0,0,0,0,0.5,1,1.48588,1.972,

1.972,1.972,1.972], and in Fig. 3(b), the knot vectors of

the original curves are both [0,0,0,0,0.33,0.67,1,1,1,1], and

that of the merged curve is [0,0,0,0,0.33,0.67,

1,1.338,1.675, 2.012,2.012,2.012,2.012]. In Fig. 4(a), the

original knot vectors are [0,0,0,0,0.5,1,1.2,1.4,1.6] and [0,0,

0,0,0.5,1,1,1,1], and the resulting one is [0,0,0,0,0.5,1,1.523,

2.045,2.045,2.045,2.045]. In Fig. 4(b), the original knot

vectors are [0,0,0,0,0.33,0.67,1,1.2,1.4,1.6] and

[20.3, 2 0.2, 2 0.1,0,0.33,0.67,1,1,1,1], and the resulting

one for the merged curve is [0,0,0,0,0.33,0.67,1,1.342,

1.684,2.025, 2.025,2.025,2.025].

To increase the accuracy of merging, we can add

geometric constraints, i.e. constraining the resulting curve

to pass through some target points on the original curves.

Fig. 5 shows the effect of merging with point constraints,

the knot vectors of the original two curves are both

[0,0,0,0,0.33,0.67,1,1,1,1], the constrained points are

Pð0:75Þ and Qð0:25Þ; which are marked as squares in figure.

4. Conclusion and future works

This paper presents an algorithm for approximate

merging of two B-spline curves. We derive the precise

merging conditions by letting the curves share common

derivatives. The curves are modified by constrained

optimization to satisfy the precise merging conditions. By

applying the knot adjustment algorithm, the control points

of the merged curve can be directly obtained from those of

the curves satisfying precise merging conditions. The

resulting merged curve has no superfluous knots.

We have used ‘Discrete coefficient norm’ in L2 sense in

this paper, as in Ref. [14], but merging with the ‘squared

difference integral norm’ is also possible. As a future work,

merging of multiple B-spline curves and of surfaces can be

further investigated.
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Appendix A. Correctness proof of the knot

adjustment algorithm

By the recursive definition of Pl
i and Ql

i in Eqs. (5) and

(6), respectively, it is sufficient to prove that (I) Qi ¼ Pi for

Fig. 3. Approximate merging of two clamped B-spline curves.

Fig. 4. Approximate merging of two unclamped B-spline curves.

Fig. 5. Approximate merging with point constraints.
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i # n 2 k þ 1; (II) Ql
n2kþ2 ¼ Pl

n2kþ2 for l ¼ 0; 1;…; k 2 2:

We prove them for two possible cases.

(a) n $ 2k 2 2; i.e. at least k curve segments.

From the local property of B-spline curves, for t [
½ts; tsþ1Þ; only k basis functions Ni;kðtÞ; i ¼ s 2 k þ 1;…; s

are non-zero, i.e.

PðtÞ ¼
Xs

i¼s2kþ1

PiNi;kðtÞ; t [ ½ts; tsþ1Þ: ðA1Þ

Let N̂i;kðtÞ denote the B-spline basis functions defined on the

knot vector T2: From the construction of the knot vectors T

and T2; we have Ni;kðtÞ ¼ N̂i;kðtÞ; s 2 k þ 1 # i # s; for all

s # n 2 k:

Consider the first B-spline curve segment in ½tk21; tk�: We

have Ni;kðtÞ ¼ N̂i;kðtÞ; 0 # i # k 2 1 (note n $ 2k 2 2);

hence we get Qi ¼ Pi; 0 # i # k 2 1: By applying the same

argument to the intervals t [ ½ts; tsþ1� for k 2 2 # s #

n 2 k þ 1:wehaveQi ¼ Pi for i # n 2 k þ 1:Thus(I) is true.

Next we show that (II) is true. We first consider the first

derivative of the B-spline curves. For the segment

½tn2kþ2; tn2kþ3�; PðtÞ ¼ QðtÞ yields Pð1ÞðtÞ ¼ Qð1ÞðtÞ:

Hence, from Eq. (4), we haveXn2kþ1

i¼n22kþ3

P1
i Ni;k21ðtÞ ¼

Xn2kþ1

i¼n22kþ3

Q1
i N̂i;k21ðtÞ:

By applying the same argument as for segment t [ ½tk21; tk�

above, it is obvious that Ni;k21ðtÞ ¼ N̂i;k21ðtÞ for n 2 2k þ

3 # i # n 2 k þ 1: We therefore conclude that Q1
n2kþ1 ¼

P1
n2kþ1: Analogously, for subsequent segments,

½tn2kþ3; tn2kþ4�;…; ½tn; tnþ1�; we have Ql
n2kþ1 ¼ Pl

n2kþ1;

l ¼ 0; 1;…; k 2 1: Since

Ql
n2kþ2 ¼

t0nþ1 2 tn2kþ2þl

k 2 l 2 1
Qlþ1

n2kþ1 þ Ql
n2kþ1;

l ¼ 0; 1;…; k 2 2;

Pl
n2kþ2 ¼

tnþ1 2 tn2kþ2þl

k 2 l 2 1
Plþ1

n2kþ1 þ Pl
n2kþ1;

l ¼ 0; 1;…; k 2 2;

and t0nþ1 ¼ tnþ1; we conclude Ql
n2kþ2 ¼ Pl

n2kþ2; l ¼

0; 1;…; k 2 2:

(b) n , 2k 2 2; i.e. fewer than k segments.

From the equations

Ql
iþ1 ¼

t0iþk 2 tiþlþ1

k 2 l 2 1
Qlþ1

i þ Ql
i; l ¼ 0; 1;…; k 2 2;

Pl
iþ1 ¼

tiþk 2 tiþlþ1

k 2 l 2 1
Plþ1

i þ Pl
i; l ¼ 0; 1;…; k 2 2;

and ðt0iþk 2 tiþlþ1Þ=ðk 2 l 2 1Þ ¼ ðtiþk 2 tiþlþ1Þ=ðk 2 l 2 1Þ

for i # n 2 k þ 1; we know that, to prove (I) Qi ¼ Pi

for i # n 2 k þ 1 and (II) Ql
n2kþ2 5 Pl

n2kþ2 for

l ¼ 0; 1;…; k 2 2;, it is sufficient to show that Ql
0 ¼ Pl

0 ð0 #

l # k 2 1Þ:

We first prove Q0 ¼ P0: For the B-spline curves PðtÞ

and QðtÞ; we insert multi-knots in the spans ½tn; tnþ1� and

½t0n; t
0
nþ1�; respectively, for 2k 2 2 2 n times, and obtain a

new curve �PðtÞ with control points �Pi ð0 # i # 2k 2 2Þ;

and another new curve �QðtÞ with control points �Qi ð0 #

i # 2k 2 2Þ: Since knot insertion does not change the

shape of the curves, we have �PðtÞ ¼ �QðtÞ: Investigating
�PðtÞ and �QðtÞ from the viewpoint of knot adjustment, we

conclude that �P0 ¼ �Q0 by part (a) of the correctness

proof. From the knot insertion formula by Boehm (see p.

141 in Ref. [15]), we have P0 ¼ �P0; Q0 ¼ �Q0; thus P0 ¼

Q0: By similar discussion for the curves PðlÞðtÞ and QðlÞðtÞ;

l ¼ 1; 2;…; k 2 1; we have Ql
0 ¼ Pl

0 ð1 # l # k 2 1Þ: This

completes the proof.

Appendix B. Proof of Theorem 1

Proof. Let the perturbation of the control points Pn22;

Pn21;Pn in curve PðtÞ and R0; R1; R2 in RðsÞ be e1; e2; e and

e d1; d2; respectively. Due to the precise merging condition,

we have

e 2 e2

u1

2
D1 2 e

D1

¼ d; ðB1Þ

e 2 e2

u1

2
e2 2 e1

u1 þ u2

u1

2

d2 2 d1

D1 þ D2

2
e 2 D2

D1

D1

¼ d2: ðB2Þ

Let a1 ¼ 1; a2 ¼D1=ðu1 þD1Þ; a3 ¼ u1=ðu1 þD1Þ a4 ¼

D1=ðu1 þu2Þ; a5 ¼1þðD1=ðu1þu2ÞÞ; a6 ¼1þðu1=ðD1þ

D2ÞÞ; a7 ¼u1=ðD1þD2Þ; we can rewrite formulas (B1) and

(B2) in matrix form as follows

a1 0 2a2 2a3 0

0 a4 2a5 a6 2a7

0
@

1
A·

e

e1

e2

d1

d2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼

u1D1

u1þD1

d1

u1D1d2þðu12D1Þd1

0
BB@

1
CCA;

ðB3Þ

and

e

e1

e2

d1

d2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼

1

D
·

a1ða
2
4 þa2

5 þa2
6 þa2

7Þ a1ða3a6 2a2a5Þ

a4ða3a6 2a2a5Þ a4ða
2
1 þa2

2 þa2
3Þ

2a2ða
2
4 þa2

5 þa2
6 þa2

7Þ2a5ða3a6 2a2a5Þ 2a2ða3a6 2a2a5Þ2a5ða
2
1 þa2

2 þa2
3Þ

2a3ða
2
4 þa2

5 þa2
6 þa2

7Þ2a6ða3a6 2a2a5Þ 2a3ða3a6 2a2a5Þ2a6ða
2
1 þa2

2 þa2
3Þ

2a7ða3a6 2a2a5Þ 2a7ða
2
1 þa2

2 þa2
3Þ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

·

u1D1

u1 þD1

d1

u1D1d2 þðu1 2D1Þd1

0
BB@

1
CCA; ðB4Þ
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where

D¼ða2
4þa2

5þa2
6þa2

7Þða
2
1þa2

2þa2
3Þ2ða3a62a2a5Þ

2
:

By simple deduction, we have

a1ða
2
4þa2

5þa2
6þa2

7Þ

.maxðla4ða3a62a2a5Þl;l2a2ða
2
4þa2

5þa2
6þa2

7Þ2a5ða3a6

2a2a5Þl;l2a3ða
2
4þa2

5þa2
6þa2

7Þ2a6ða3a62a2a5Þl;l

2a7ða3a62a2a5ÞlÞ;

a1ða
2
4þa2

5þa2
6þa2

7Þ

D
#

3

4
;

a4ða
2
1þa2

2þa2
3Þ

D
#

1

2þ
ffiffi
2

p ;

a7ða
2
1þa2

2þa2
3Þ

D
#

1

2þ
ffiffi
2

p ;

a2ða3a62a2a5Þþa5ða
2
1þa2

2þa2
3Þ

D
#

1þa2a3þa2
3

3
;

a3ða3a62a2a5Þþa6ða
2
1þa2

2þa2
3Þ

D
#

1þa2a3þa2
3

3
;

a1ða3a62a2a5Þ

D

����
����# 1

3

By substituting the above inequalities into Eqs. (B3) and (B4),

we obtain Eqs. (16) and (17). This completes the proof. A
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